Деление в столбик

Как разделить десятичную дробь на натуральное число столбиком

Делить столбиком можно не только натуральные числа, но и дроби. Алгоритм мы подробно опишем здесь. Итак, как делить десятичные дроби на натуральные числа в столбик:

1. Добавить к десятичной дроби справа несколько нулей (для деления мы можем добавлять любое их количество, которое нам необходимо).

2. Выполнить деление по стандартной схеме. Когда деление целой части дроби подойдет к концу, мы ставим запятую в получившемся частном и считаем дальше.

Результатом такого деления может стать как конечная, так и бесконечная периодическая десятичная дробь. Это зависит от остатка: если он нулевой, то результат окажется конечным, а если остатки начнут повторяться — получится периодическая дробь.

Пример: Разделить столбиком 49,14÷3

Как решаем

1. Делим столбиком, предварительно дописав два нуля к десятичной дроби.

2. После того, как мы поделили целую часть дроби и получили 16, отделяем ответ запятой (16) и продолжаем деление уже для дробной части

В конце у нас нулевой остаток, значит деление завершено.

Ответ: 49,14÷3 = 16,38

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать. После прохождения курса ребенок сможет:

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова
  2. Научится запоминать на более длительный срок
  3. Увеличится скорость воспоминания нужной информации

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Понятие делимости и ее основные свойства

Напомним суть операции деления. Она является обратной для операции умножения. Пусть есть три числа, a, b и c, причем для них справедливо соотношение

a = bc

В таком случае говорят, что a является произведением b и c. Тогда результатом деления числа a на b называют число с.

Надо понимать, что если мы делим друг на друга целые числа , то в результате может получится как целое, так и дробное число:

15:5 = 3

15:10 = 1,5

Если в результате деления числа а на b получилось целое число с, то говорят, что а делится на b.

Так, число 30 делится на 6, потому что при делении 30 на 6 получается целое число 5:

30:6 = 5

Иногда в математике используют выражение «делится нацело». Оно означает тоже самое, что и просто слово «делится». Например, 81 делится нацело на 3:

81:3 = 27

Порою в математике используют чуть более сложное определение делимости:

Видно, что оно похоже на определение операции деления. Его удобно использовать при доказательстве некоторых свойств делимости.

Понятие делимости определено только для целых чисел. Например, при делении 12,5 на 2,5 получается целое число:

12,5:2,5 = 5

однако никто не говорит, что 12,5 делится на 2,5.

Если число а делится на b, то b называют делителем числа a, а также говорят, что а – кратно b, или а является кратным b.

Рассмотрим несколько примеров:

  • так как 72:8 = 9, то 72 делится на 8, 72 кратно 8, и 8 – это делитель числа 72;
  • так как 132:11 = 12, то 132 делится на 11, 132 является кратным 11, и 11 является делителем 132.

Очевидно, что у каждого числа есть бесконечное количество кратных ему чисел. Так, числу 7 кратны числа 7, 14, 21, 28 и т.д.Ряд можно продолжать бесконечно, просто умножая 7 на каждое следующее натуральное число:

7•1 = 7

7•2 = 14

7•3 = 21

7•4 = 28

А вот количество делителей ограничено. Так, число 15 делится только на 1, 3, 5, 15, а также на –1, –3, –5 и –15. Есть одно исключение – ноль делится на любое целое число (кроме нуля), а потому имеет бесконечное число делителей. Стоит уточнить, что часто под делителями натурального числа понимают только другие натуральные числа, то есть отрицательные делители не учитывают.

Теперь рассмотрим некоторые свойства делимости чисел (для удобства будем пронумеровывать правила, чтобы было легче ссылаться на них).

Действительно, при делении целого числа на себя получается единица:

а:а = 1

Ноль является исключением, поскольку деление на ноль не допускается в алгебре.

При делении на единицу число не меняется:

а:1 = а

поэтому, если а – целое, то после деления на единицу оно останется целым.

Приведем пример. 128 делится на 16:

128:16 = 8

В свою очередь 16 делится на 4:

16:4 = 4

Значит, и 128 делится на 4:

128:4 = 32

Теперь докажем это свойство более строго. Если а делится на b, а b делится нацело на c, то, по определению делимости, должны существовать такие целые m и k, для которых выполняются равенства:

а = bm

b = kc

Подставим второе равенство в первое

а = bm = kcm = kmc

Так как произведение целых чисел k и m само является целым, то, опять-таки по определению делимости, а делится нас.

Тоже самое доказательство поясним на конкретных числах.

Пусть 210 делится нацело на 30, а 30 делится на 6. Тогда требуется доказать, что 210 делится на 6 (не выполняя самого деления). 210 можно представить в виде

210 = 30•7

в свою очередь 30 можно записать как

30 = 6•5

Теперь подставим вторую запись в первую:

150 = 30•7 = (6•5)•7 = 6•(5•7)

Так как числа 5 и 7 целые, то целым является и их произведение, следовательно, 150 делится на 6.

Описанные свойства являются основными для делимости. На их основе можно доказать много других утверждений. Например, если а делится на b, то верно и то, что аn делится на bn, где n– произвольное натуральное число. Например, 24 делится на 12, поэтому 242 делится на 122:

242:122 = 576:144 = 4

Докажем строго это свойство. По определению можно записать равенство

а = сb

Возведем правую и левую часть равенства в степень n:

аn = (сb)n = cnbn

Так как с – целое, то и сn будет целым, поэтому аn делится на bn.

Вычитание десятичных дробей

При вычитании десятичных дробей нужно соблюдать те же правила что и при сложении: «запятая под запятой» и «равное количества цифр после запятой».

Пример 1. Найти значение выражения 2,5 − 2,2

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

Вычисляем дробную часть 5−2=3. Записываем цифру 3 в десятой части нашего ответа:

Вычисляем целую часть 2−2=0. Записываем ноль в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 0,3. Значит значение выражения 2,5 − 2,2 равно 0,3

2,5 − 2,2 = 0,3

Пример 2. Найти значение выражения 7,353 — 3,1

В этом выражении разное количество цифр после запятой. В дроби 7,353 после запятой три цифры, а в дроби 3,1 только одна. Значит в дроби 3,1 в конце нужно добавить два нуля, чтобы сделать количество цифр в обеих дробях одинаковым. Тогда получим 3,100.

Теперь можно записать в столбик данное выражение и вычислить его:

Получили ответ 4,253. Значит значение выражения 7,353 − 3,1 равно 4,253

7,353 — 3,1 = 4,253

Как и в обычных числах, иногда придётся занимать единицу у соседнего разряда, если вычитание станет невозможным.

Пример 3. Найти значение выражения 3,46 − 2,39

Вычитаем сотые части 6−9. От число 6 не вычесть число 9. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда число 6 обращается в число 16. Теперь можно вычислить сотые части 16−9=7. Записываем семёрку в сотой части нашего ответа:

Теперь вычитаем десятые части. Поскольку мы заняли в разряде десятых одну единицу, то цифра, которая там располагалась, уменьшилась на одну единицу. Другими словами, в разряде десятых теперь не цифра 4, а цифра 3. Вычислим десятые части 3−3=0. Записываем ноль в десятой части нашего ответа:

Теперь вычитаем целые части 3−2=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,07. Значит значение выражения 3,46−2,39 равно 1,07

 3,46−2,39=1,07

Пример 4. Найти значение выражения 3−1,2

В этом примере из целого числа вычитается десятичная дробь. Запишем данное выражение столбиком так, чтобы целая часть десятичной дроби 1,23 оказалась под числом 3

Теперь сделаем количество цифр после запятой одинаковым. Для этого после числа 3 поставим запятую и допишем один ноль:

Теперь вычитаем десятые части: 0−2. От нуля не вычесть число 2. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда, 0 обращается в число 10. Теперь можно вычислить десятые части 10−2=8. Записываем восьмёрку в десятой части нашего ответа:

Теперь вычитаем целые части. Раньше в целой располагалось число 3, но мы заняли у него одну единицу. В результате оно обратилось в число 2. Поэтому из 2 вычитаем 1. 2−1=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,8. Значит значение выражения 3−1,2 равно 1,8

3 − 1,2 = 1,8

Умножение десятичной дроби на обычное число

Иногда возникают ситуации, когда требуется умножить десятичную дробь на обычное число.

Чтобы перемножить десятичную дробь и обычное число, нужно перемножить их, не обращая внимания на запятую в десятичной дроби. Получив ответ, необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в десятичной дроби, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Например, умножим 2,54 на 2

Умножаем десятичную дробь 2,54 на обычное число 2, не обращая внимания на запятую:

Получили число 508. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,54. В дроби 2,54 после запятой две цифры.

Возвращаемся к числу 508 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 5,08. Значит значение выражения 2,54 × 2 равно 5,08

2,54 × 2 = 5,08

Что нужно для освоения деления в младшем школьном возрасте

Деление — это не первое арифметическое действие, которое осваивают дети. Поэтому, прежде чем браться за «делимое-делитель-частное», нужно обязательно выяснить, знает ли ребёнок разряды чисел и понимает ли принципы:

  • сложения;
  • вычитания;
  • умножения.

Таблицей деления дети могут проверять решения примеров

Эффективные способы объяснения деления школьникам

Все способы объяснения можно условно поделить на академичные и образные. Первые опираются на цифры, то есть записываются в виде арифметических примеров, вторые — на конкретные предметы: конфеты, мячи и т. д., которые умозрительно делятся между людьми, игрушками.

В работе с учениками начальной школы эффективным будет синтетический способ, совмещающий опору на образы и цифры одновременно.

Деление на основе знания таблицы умножения

Для понимания сути деления стоит обратиться к вычислениям с опорой на таблицу умножения.

Инструкция:

  1. Записываем пример: 2 х 5 = 10.
  2. Берём 10 монет и просим поделить их на двоих — получается две стопки по 5 монет.
  3. Далее 10 монет делим на пятерых — получается 5 стопок по 2 монеты.
  4. Вывод — при делении мы выясняем, сколько раз каждый множитель помещается в произведении.

На этом приёме разъясняем понятийную базу: то число, которое делится, называется делимое, то число, на которое делится — делителем, а результат — частным.

Поскольку деление обратно умножению, то второе может проверить результат первого.

Первое время для закрепления навыка можно зарисовывать схему перестановки значений при делении и при проверки умножением

Инструкция:

  1. Делимое делим на делитель, то есть 10 : 2.
  2. Получаем частное — 5.
  3. Проверяем умножением, то есть частное умножаем на делитель — 5 х 2.
  4. Получаем 10, что в исходном примере является делимым.

Деление двузначных чисел на однозначные

Чтобы разделить двузначное число, не являющееся произведением таблицы умножения, на однозначное, нужно каждую цифру делимого разделить на делитель и записать первое частное десятками, а второе — единицами. Например, 86 : 2.

Инструкция:

  1. Делим 8 на 2. Получаем 4.
  2. Делим 6 на 2. Получаем 3.
  3. Ответ — 43.
  4. Проверяем — 43 х 2 = 86.

Деление способом группирования

Суть этого способа деления заключается в подсчёте количества групп равных делителю, которые помещаются в делимое. Результат будет частным.

Инструкция:

  1. Задача состоит в распределении мячей между командами. Решаем пример — 30 : 3.

  2. Распределим 30 мячей между тремя командами — обводим тройки.
  3. Считаем количество групп троек — 10. Каждой команде достанется по 10 мячей.
  4. Вывод — 30 : 3 = 10.

Как объяснить деление в столбик

Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.

Деление без остатка

Инструкция:

  1. Решим пример 396 : 3.

  2. Записываем делимое, справа рисуем повёрнутую на левый бок букву Т и в верхнем «окошке» вписываем делитель — 3.
  3. Начинаем с сотен. 3 делится на 3 без остатка, получаем 1. Вписываем результат под делителем.
  4. Проверяем — 1 х 3 получаем 3, вписываем 3 под сотней и производим вычитание. Остатка нет. Подводим черту.
  5. Приступаем к десяткам. 9 : 3 получаем 3. Записываем 3 рядом с 1.
  6. Проверяем — 3 х 3 получаем 9, вписываем 9 под чертой, производим вычитание. Остатка нет. Подводим черту.
  7. Работаем с единицами. 6 : 3 получаем 2. Записываем 2 рядом с 13.
  8. Проверяем — 2 х 3 получаем 6, вписываем 6 под чертой, вычитаем. Остатка нет.
  9. Результат — 132.

Деление с остатком

Инструкция:

  1. Решим пример 90 : 4.

  2. В десятках помещается две четвёрки. В частном запишем значение 2, затем перемножаем 2 х 4 = 8, вписываем под 9 полученное произведение, вычитаем и получаем 1.
  3. Сносим к разности 0, получаем 10. В 10 помещается 2 четвёрки, 10 — 8 = 2. Это остаток.
  4. 2 на 4 не делится. Ставим десятичную запятую в частном и добавляем 0 к 2.
  5. 20 : 4 = 5. Записываем частное после запятой.
  6. Проверяем умножением — 5 х 4 = 20. 20 — 20 = 0 — остатка нет.

Деление на двузначные числа

Если в делителе есть десятки, сотни, то для облегчения решения делитель можно упростить, разбив на единицы (десятки).

Для деления на десятки нужно воспользоваться правилом упрощения

Инструкция:

  1. Решим пример — 405 : 15.
  2. Разобьём 15 на единицы, на 5 и 3 — их произведение равно 15.
  3. Теперь решаем два примера. Сначала 405 : 5. Частное 81.
  4. Затем 81 : 3. Частное 27.
  5. Результат — 405 : 15 = 27.

Видео: тренажёр быстрого деления в уме для школьников

Объяснить деление можно не только школьнику, но и дошкольнику. Причём не только в условиях детского сада, школы, но и дома. Для этого нужно убедиться, что ребёнок имеет опорные знания, и у родителя есть запас времени, терпения для регулярных занятий со своим чадом.

Как записывать деление в столбик

Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком.

Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:

За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:

Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:

Под делимым будут записываться промежуточные вычисления:

Полностью форма записи деления столбиком выглядит следующим образом:

Как делить столбиком

Допустим, нам нужно разделить  780  на  12,  записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число  7,  так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число  78  больше делителя, поэтому мы начинаем деление с него:

В нашем случае число  78  будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра —  0,  это значит, что частное будет состоять из  2  цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз  12  содержится в числе  78.  Для этого мы последовательно умножаем делитель на натуральные числа  1, 2, 3, …,  пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число  6,  записываем его под делитель, а из  78  (по правилам вычитания столбиком) вычитаем  72  (12 · 6 = 72).  После того, как мы вычли  72  из  78,  получился остаток  6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше

К получившемуся остатку —  6,  сносим следующую цифру делимого —  0.  В результате, получилось неполное делимое —  60.  Определяем, сколько раз  12  содержится в числе  60.  Получаем число  5,  записываем его в частное после цифры  6,  а из  60  вычитаем  60  (12 · 5 = 60).  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит  780  разделилось на  12  нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

780 : 12 = 65.

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить  9027  на  9.

Определяем неполное делимое — это число  9.  Записываем в частное  1  и из  9  вычитаем  9.  В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого —  0.  Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль  (0 : 9 = 0)  и в промежуточных вычислениях из  0  вычитаем  0.  Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого —  2.  В промежуточных вычислениях вышло так, что неполное делимое  (2)  меньше, чем делитель  (9).  В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз  9  содержится в числе  27.  Получаем число  3,  записываем его в частное, а из  27  вычитаем  27.  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число  9027  разделилось на  9  нацело:

9027 : 9 = 1003.

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить  3000  на  6.

Определяем неполное делимое — это число  30.  Записываем в частное  5  и из  30  вычитаем  30.  В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого —  0.  Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из  0  вычитаем  0:

Сносим следующую цифру делимого —  0.  Записываем в частное ещё один нуль и в промежуточных вычислениях из  0  вычитаем  0.  Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток —  0.  Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит  3000  разделилось на  6  нацело:

3000 : 6 = 500.

Задачи, которые решаются при помощи действия деления

В курсе математики
средней школы наиболее часто используется деление при решении таких задач,
когда нужно:

  • Узнать, во сколько раз одно число меньше и больше другого? Этот вопрос может звучать по-другому: сколько раз меньшее число содержится (помещается) в большем? Или: сколько раз поместится в большем числе меньшее?Например: сколько пятиграммовых стиков сахара находится в килограммовой упаковке? (1000 г : 5 г = 200 шт.).
  • Число разделить на заданное количество равных частей.Например: сколько получится грамм сахара в каждом пакете, если пересыпать килограмм сахара в 5 одинаковых пакетов поровну? (1000 г : 5 шт. = 200 г).
  • Уменьшить число в заданное количество раз.Например: для приготовления блюда на 5 человек использовали 1 кг сахара, а сколько сахара потребуется для приготовления этого же блюда для одного человека? (1000 г : 5 чел. = 200 г).

Признаки делимости

Признаки делимости чисел сложно применять, поскольку их достаточно много. Зато знание таких признаков существенно экономит время, поскольку позволяет без деления узнать, делиться одно число на другое или нет. Разберемся в теме подробнее.

Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.

Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности. Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.

  • Число делится на 2 только если является четным.
  • Число делится на 4, если последние две цифры числа делятся на 4 или последние две цифры 00. Например, число 130 не делится на 4, так как 30 не делится на 4. А вот уже число 1400 можно поделить на 4.
  • Число делится на 8, если последние две цифры числа нули или делятся на 8
  • Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 – делится на 3.
  • Число делится на 9, если сумма цифр числа делится на 9. Признак похож на признак делимости на число 3. Интересно: Если число делится на 9, то оно делится и на 3. При этом, число, которое делится на 3 не всегда делится на 9.
  • Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.
  • Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3. То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3

Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.

Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7

Число делится на 10 только если последней цифрой числа является 0

По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.

Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю

Приведем пример:

Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.

Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.

Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.

Признаки Запомни
Признак делимости на 2 Число делится на 2, если его последняя цифра делится на 2 или является нулём.
Признак делимости на 4 Число делится на 4, если две его последние цифры нули или образуют число, делящееся на 4.
Признак делимости на 8 Число делится на 8, если три последние его цифры нули или образуют число, делящееся на 8.
Признак делимости на 3 Число делится на 3, если сумма всех его цифр делится на 3.
Признак делимости на 6 Число делится на 6, если оно делится одновременно на 2 и на 3.
Признак делимости на 9 Число делится на 9, если сумма всех его цифр делится на 9.
Признак делимости на 5 Число делится на 5, если его последняя цифра 5 или 0.
Признак делимости на 25 Число делится на 25, если его две последние цифры нули или образуют число, которое делится на 25.
Признак делимости на 10,100 и 1000.
  • 10 делятся нацело только те числа, последняя цифра которых нуль.
  • На 100 делятся нацело только те числа, две последние цифры которых нули.
  • На 1000 делятся нацело только те числа, три последние цифры нули.
Признак делимости на 11 Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.

Мы поговорили о признаках делимости. Расписали все существующие признаки по группам. В особо сложных ситуациях привели примеры.

Правило встречается в следующих упражнениях:

2 класс

Страница 58. Вариант 1. № 1,
Моро, Волкова, Проверочные работы

Страница 58,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 75,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 78,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 88,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 57,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 65,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 66,
Моро, Волкова, Рабочая тетрадь, часть 2

3 класс

Страница 31,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 36,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 55,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 30. Вариант 1. № 1,
Моро, Волкова, Проверочные работы

Страница 23,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 49,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 59,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 72,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 102,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

4 класс

Страница 5,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 10,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 11,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 68,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 69,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 90,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 91,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 95,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 8,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 49,
Моро, Волкова, Рабочая тетрадь, часть 1

5 класс

Задание 441,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 673,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 818,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 36,
Мерзляк, Полонский, Якир, Учебник

Упражнение 1,
Мерзляк, Полонский, Якир, Учебник

Упражнение 520,
Мерзляк, Полонский, Якир, Учебник

Упражнение 656,
Мерзляк, Полонский, Якир, Учебник

Упражнение 657,
Мерзляк, Полонский, Якир, Учебник

Упражнение 673,
Мерзляк, Полонский, Якир, Учебник

Упражнение 1050,
Мерзляк, Полонский, Якир, Учебник

Другие случаи делимости на 2

В этом пункте мы хотим коснуться случаев, в которых целое число задано не непосредственно, а в виде некоторого значения , и нужно определить, делится ли данное число на 2 или нет. Обычно в этих случаях признак делимости на 2 не помогает, также не представляется возможным выполнить и непосредственное деление. Следовательно, нужно искать какие-то другие пути решения.

Один из подходов к решению таких задач подсказывает следующее свойство делимости: если хотя бы один из множителей в произведении целых чисел делится на данное число, то и все произведение делится на это число. Таким образом, если мы представим исходное буквенное выражение в виде произведения нескольких множителей, один из которых будет делиться на 2, то этим будет доказана делимость исходного числа 2.

Представить исходное выражение в виде произведения нескольких множителей иногда помогает формула бинома Ньютона. Рассмотрим решение примера.

Пример.

Делится ли значение выражения , вычисленное при некотором натуральном n, на 2?

Решение.

Очевидно равенство . Теперь воспользуемся формулой бинома Ньютона, после чего упростим полученное выражение:

В последнем выражении можно 2 вынести за скобки, в итоге имеем равенство . При любом натуральном n правая его часть делится на 2, так как содержит множитель 2, следовательно, на 2 делится и левая часть равенства.

Ответ:

да, делится.

Во многих случаях для доказательства делимости на 2 используется метод математической индукции. Возьмем выражение из предыдущего примера и докажем методом математической индукции, что при любых натуральных n его значение делится на 2.

Пример.

Докажите, что значение выражения при любом натуральном n делится на 2.

Решение.

Воспользуемся методом математической индукции.

Во-первых, покажем, что значение выражения делится на 2 при n=1. Имеем , а 6 очевидно делится на 2.

Во-вторых, предположим, что значение выражения делится на 2 при n=k, то есть, — делится на 2.

В-третьих, исходя из того, что делится на 2, докажем, что значение выражения делится на 2 при n=k+1. То есть, докажем, что делится на 2, учитывая, что делится на 2.

Для этого выполним следующие преобразования: . Выражение делится на 2, так как делится на 2, выражение тоже делится на 2, так как содержит множитель 2, следовательно, в силу свойств делимости разность этих выражений тоже делится на 2.

Этим доказано, что при любом натуральном n значение выражения делится на 2.

Отдельно следует сказать о том, что если в произведении присутствуют два числа, которые идут друг за другом в , то такое произведение делится на 2. Например, произведение целых чисел вида (n+7)·(n−1)·(n+2)·(n+6) делится на 2 при любом натуральном n, так как оно содержит два подряд идущих числа из натурального ряда чисел (ими являются числа n+6 и n+7), а одно из них обязательно делится на 2 при любом натуральном n.

Аналогично, если в произведении присутствуют два множителя, между которыми находится четное число членов натурального ряда, то такое произведение делится на 2. Например, значение выражения (n+1)·(n+6) при любом натуральном n делится на 2, так как между натуральными числами n+1 и n+6 содержится четное количество чисел: n+2, n+3, n+4 и n+5.

Обобщим информацию двух предыдущих пунктов. Если показать, что значение некоторого выражения делится на 2 при n=2·m и при n=2·m+1, где m – произвольное целое число, то этим будет доказано, что исходное выражение делится на 2 при любых целых n.

Пример.

Докажите, что n3+7·n2+16·n+12 делится на 2 при любом натуральном n.

Решение.

Исходное выражение можно представить в виде произведения (n+2)2·(n+3) (при необходимости обращайтесь к материалу статьи разложение многочлена на множители). В этом произведение присутствуют множители n+2 и n+3, которые соответствуют двум идущим подряд числам из натурального ряда. При любом натуральном значении n одно из чисел n+2 или n+3 обязательно делится на 2, поэтому и произведение (n+2)2·(n+3) делится на 2, следовательно, и значение исходного выражения делится на 2.

Приведем более строгое доказательство.

При n=2·m имеем . Это выражение делится на 2, так как содержит множитель 4, который делится на 2.

При n=2·m+1 имеем . Полученное произведение делится на 2, так как содержит множитель 2.

Этим доказано, что n3+7·n2+16·n+12=(n+2)2·(n+3) делится на 2 при любом натуральном n.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий