Содержание
- 1 Гормоны и их воздействие на формирование пола
- 2 Сколько хромосом у картошки? Особенности генома растения
- 3 Примечания
- 4 Гаплоидный и диплоидный набор хромосом
- 5 Потенциальные проблемы на генном уровне
- 6 48 хромосом у человека. Хромосомные болезни
- 7 Лечение
- 8 5 ведущих вузов России с переподготовкой учителей физики дистанционно
- 9 Хромосома это кратко. Хромосомы
- 10 Что такое хромосом. Хромосомы эукариот
- 11 Хромосома это кратко. Хромосомы
- 12 Изменчивость хромосом в онтогенезе и эволюции
- 13 Симптоматика
- 14 Строение хромосомы
- 15 Что значит 46 и 47 хромосом: история открытия
- 16 Количество хромосом в соматической клетке
- 17 Что такое хромосомы
Гормоны и их воздействие на формирование пола
У человека мужские железы — семенники — продуцируют половые гормоны ряда тестостерона. Они влияют как на развитие (анатомическое строение наружных и внутренних половых органов), так и на особенности физиологии. Под воздействием тестостерона формируются вторичные половые признаки — строение скелета, особенности фигуры, оволосение тела, тембр голоса, В организме женщины яичники вырабатывают не только половые клетки, но и гормоны, являясь Половые гормоны, такие как эстрадиол, прогестерон, эстроген, способствуют развитию наружных и внутренних половых органов, оволосению тела по женскому типу, регулируют менструальный цикл и протекание беременности.
У некоторых позвоночных животных, рыб, и земноводных биологически активные вещества, продуцируемые гонадами, сильно влияют на развитие первичных и вторичных половых признаков, а виды хромосом при этом не оказывают настолько большого воздействия на формирование пола. Например, личинки морских полихет — бонеллии — под влиянием женских половых гормонов прекращают свой рост (размеры 1-3 мм) и становятся карликовыми самцами. Они обитают в половых путях самок, которые имеют длину тела до 1 метра. У рыб-чистильщиков самцы содержат гаремы из нескольких самок. Женские особи, кроме яичников, имеют зачатки семенников. Как только самец гибнет, одна из гаремных самок берет на себя его функцию (в её теле начинают активно развиваться мужские гонады, вырабатывающие половые гормоны).
Сколько хромосом у картошки? Особенности генома растения
Генетические исследования различных культур растений важны для сельскохозяйственной промышленности. Каждое живое существо на земле имеет свой генетический код. От того, сколько хромосом у картошки, зависят последующие исследования в селекции. Создание новых усовершенствованных сортов необходимо для произрастания в современных условиях.
Количество хромосом у картошки
Клетки, содержащие наследственную память, называются хромосомами. Они включают в себя нуклеиновую кислоту, функция которой заключается в сохранении, воплощении и последующем продолжении информации. В большинстве случаев хромосомы в клетках содержатся попарно. У картофеля 48 хромосом или 24 пары.
Для сравнения число пар хромосом в других растениях:
- Горох посевной – 14.
- Земляника лесная – 14.
- Гречиха культурная – 16.
- Черешня – 16.
- Редис – 18.
- Арбуз – 20.
- Фасоль – 22.
История хромосомного анализа насчитывает более 140 лет. Термин хромосома впервые употребил немецкий ученый В. Вальдейер в 1888г.
Особенности генома растений
Основной биологической характеристикой растения является количество показателя ДНК на гаплоидный геном. Эукариот – это клетки живых организмов, содержащих ядро. Все живое имеет такие клетки, кроме бактерий и архей. Изучение эукариот растений выявило парадоксы. Их суть состоит в значительном колебании размера ДНК, несоответствие между их размерами у различных видов. Был обнаружен избыток ДНК по сравнению с необходимым количеством для кодирования белков. Эти несоответствия объясняются плоидией. Данный термин обозначает хромосомную аномалию, которая может возникать в силу внешних и внутренних факторов. Активное изменение структуры хромосом присуще растительному миру.
Методы исследования в генетике растений
Существует множество методик исследований в науке. Из широко распространенных выделяются:
- моносомный анализ;
- экспериментальный мутагенез;
- гибридизация;
- мскусственный ресинтез;
- автополиплоидия.
Перечисленные методы играют важнейшую роль при изучении наследственности и изменчивости растений. Интересен метод экспериментального мутагенеза. В процессе работы на геном происходит воздействие химическими веществами или радиацией. Полученные результаты составляют генетические карты хромосом. Измененный геном впоследствии проявляет себя по-другому в различных условиях внешней среды. Так называемая карта памяти оставляет новые физиологические и биохимические особенности различных видов растений.
Примечания
- ↑ Тарантул В. З. Толковый биотехнологический словарь. — М.: Языки славянских культур, 2009. — 936 с. — 400 экз. — ISBN 978-5-9551-0342-6.
- Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — 808 с. — ISBN 978-5-4344-0112-8. — С. 309—336.
- , с. 13.
- , с. 9.
- ↑ , с. 12.
- , с. 29.
- ↑
- , с. 84—87.
- , с. 30.
- Рубцов Н. Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т, 2006. — 152 с. — ISBN 5-94356-376-8.
- , с. 91.
- Разин С. В. Хроматин: упакованный геном / С. В. Разин, А. А. Быстрицкий. — М.: БИНОМ: Лаборатория знаний, 2009. — 176 с. — ISBN 978-5-9963-0087-7.
- , с. 45—46.
- , с. 401—414.
- , с. 31.
- ↑
Гаплоидный и диплоидный набор хромосом
Плоидность – количество хромосомных наборов в ядрах клеток. В живых организмах они могут быть парными и непарными. Так уж определено, что у человека в клетках образуется диплоидный набор хромосом. Диплоидный (полный, двойной набор хромосом) присущ всем соматическим клеткам, у человека он представлен 44 аутосомами и 2 половыми хромосомами.
Гаплоидный набор хромосом – представляет собой одинарный набор непарных хромосом половых клеток. При таком наборе в ядрах содержится 22 аутосомы и 1 половая. Гаплоидный и диплоидный наборы хромосом могут присутствовать одновременно (при половом процессе). В это время происходит чередование гаплоидной и диплоидной фазы: из полного набора посредством деления образуется одинарный набор, затем два одинарных сливаются, образуя полный набор и так далее.
Нарушение хромосомного набора. Во время развития на клеточном уровне могут происходить свои сбои и нарушения. Изменения в кариотипе (хромосомном наборе) человека приводят к хромосомным заболеваниям. Самым известным из них является синдром Дауна. При таком заболевании сбой происходит в 21 паре, когда к двум одинаковым хромосомам прибавляется точно такая же, но третья лишняя (образуется триосомия).
Нередко при нарушении 21-ой пары хромосом плод не успевает развиться и погибает, но рожденный ребенок с синдромом Дауна обречен на сокращенную жизнь и отсталое умственное развитие. Это заболевание неизлечимо. Известны нарушения не только по 21-й паре, имеет место нарушение по 18-й (синдром Эдвардса), 13-й (синдром Патау) и 23-й (синдром Шерешевского-Тернера) паре хромосом.
Изменения развития на хромосомном уровне приводят к неизлечимым заболеваниям. Как следствие – сниженная жизнеспособность, особенно новорожденных детей, отклонения в интеллектуальном развитии. Дети, страдающие хромосомными болезнями, заторможены в росте, а половые органы не развиваются согласно возрасту. На сегодняшний день не существует методов защиты клеток от появления неправильного хромосомного набора.
Что же может послужить причиной генетического сбоя:
- экология;
- плохая наследственность;
- неправильный образ жизни;
- дефицит сна.
Но врачи не дают стопроцентной гарантии рождения здорового ребенка даже родителям, которые всю свою жизнь вели здоровый образ жизни, жили вдали от городских выхлопов и имели абсолютно здоровых родственников. Природа сама решает, как распределить хромосомные наборы.
Потенциальные проблемы на генном уровне
Проблем на уровне генов может быть несколько. И все они рассматриваются отдельно, ведь имеют разную клиническую картину. Ниже представлены только те патологии, которые современная медицина может успешно вылечить после того, как родился больной ребенок:
- Моносомия — патология, которая отличается отсутствием гомологичной хромосомы.
- Анэуплоидия — нарушается число отдельных единиц.
- Трисомия — когда в клетке присутствует лишняя хромосома (также есть патология тетрасомия, когда лишних хромосом две).
- Полиплоидия — количество гаплоидных наборов больше, чем диплоидных.
Эти показания считаются отклонением от нормы и их можно определить еще во время внутриутробного развития. Если существует возможного того, что ребенок родится с серьезными проблемами, врачи часто рекомендуют беременной женщине сделать аборт. В противном случае женщина обрекает себя на жизнь с инвалидом, которому будет необходимо дополнительное воспитание.
48 хромосом у человека. Хромосомные болезни
Хромосомные
болезни, или синдромы — это группа
врожденных патологических состояний,
проявляющихся множественными пороками
развития, различающихся по своей
клинической картине, часто сопровождающихся
тяжелыми нарушениями психического и
соматического развития. Основной дефект
— различные степени интеллектуальной
недостаточности, что может осложняться
нарушениями зрения, слуха, опорно-двигательного
аппарата, более выраженными, чем
интеллектуальный дефект, расстройствами
речи, эмоциональной сферы и поведения.
Диагностические
признаки хромосомных синдромов можно
разделить на три
группы:
неспецифические,
т.е. такие, как выраженная умственная
отсталость,
сочетающаяся с
дисплазиями, врожденными пороками
развития и черепно-лицевыми аномалиями;
признаки,
характерные для отдельных синдромов;
патогномоничные
для конкретного синдрома, например,
специфический плач при синдроме
«кошачьего крика».
Хромосомные
заболевания не подчиняются менделеевским
закономерностям передачи заболевания
потомству и в большинстве случаев
обнаруживаются спорадически, являясь
следствием мутации в половой клетке
одного из родителей.
Хромосомные
болезни могут быть унаследованы, если
мутация имеется во всех клетках
родительского организма.
К
механизмам, лежащим в основе геномных
мутаций, относятся:
нерасхождение
— хромосомы, которые должны были
разделяться во
время клеточного
деления, остаются соединенными и
относятся к одному полюсу;
«анафазное
отставание» — утрата отдельной хромосомы
(моносомия)
может иметь место во время
анафазы, когда одна хромосома может
отстать от остальных;
полиплоидизация
— в каждой клетке геном представлен
более чем
дважды.
Факторы, повышающие риск рождения детей с хромосомными болезнями
Причины
возникновения хромосомных болезней до
настоящего времени недостаточно изучены.
Имеются экспериментальные данные о
влиянии на мутационный процесс таких
факторов, как: действие ионизирующих
излучении, химических веществ, вирусов.
Другими причинами нерасхождения хромосом
могут быть: сезонность, возраст отца и
матери, порядок рождения детей, прием
лекарств во время беременности,
гормональные нарушения, алкоголизм и
др. Не исключается до определенной
степени и генетическое детерминирование
нерасхождения хромосом. Повторим,
однако, что причины образования геномных
и хромосомных мутаций на ранних стадиях
развития зародыша до сих пор окончательно
не раскрыты.
К
биологическим факторам повышения риска
рождения детей с хромосомными
аномалиями может быть отнесен возраст
матери. Риск рождения больного ребенка
особенно резко возрастает после 35 лет.
Это характерно для любых хромосомных
болезней, но наиболее четко наблюдается
для болезни Дауна.
В
медико-генетическом планировании
беременности особое значение уделяется
двум факторам — наличию анеуплоидии
по аутосомам у ребенка и возрасту матери
старше 35 лет.
К
кариотипическим факторам риска у
супружеских пар относятся: анеуплоидия
(чаще в мозаичной форме), робертсоновские
транслокации (слияние двух телоцентрических
хромосом в области деления) кольцевые
хромосомы, инверсии. Степень повышения
риска зависит от типа хромосомных
нарушений.
Синдром
Дауна (трисомия по 21 паре хромосом)
Причина: Нерасхождение
21 пары аутосом, транслокация 21 аутосомы
на аутосому группы D
или G.
У 94% кариотип — 47 хромосом. Частота
проявления синдрома увеличивается с
возрастом матери.
Клиника: Признаки,
позволяющие диагностировать заболевание,
в типичных случаях выявляются на самых
ранних этапах жизни ребенка. Малый рост
ребенка, маленькая круглая голова со
скошенным затылком, своеобразное лицо
— бедная мимика, косой разрез глаз со
складкой у внутреннего угла, нос с
широкой плоской переносицей, маленькие
деформированные ушные раковины. Рот
обычно полуоткрыт, язык толстый,
неповоротливый, нижняя челюсть иногда
выступает вперед. На щеках часто
отмечается сухая экзема. Обнаруживается
укорочение конечностей, особенно в
дистальных отделах. Кисть плоская,
пальцы рук широкие, короткие. В физическом
развитии отстают, однако не резко, но
нервно-психическое развитие замедленно
(плохо развита речь). С возрастом
выявляется ряд новых черт заболевания.
Голос грубеет, отмечается близорукость,
косоглазие, конъюнктивиты, неправильный
рост зубов, кариес.Слабо развита иммунная
система, инфекционные заболевания
протекают крайне тяжело и в 15 раз чаще,
чем у других детей. Встречается острый
лейкоз.
Лечение
5 ведущих вузов России с переподготовкой учителей физики дистанционно
Хромосома это кратко. Хромосомы
chromosome) — нитевидная структура клеточного ядра, несущая генетическую информацию в виде генов, которая становится видной при делении клетки. Хромосома состоит из двух длинных полинуклеатидных цепей, образующих молекулу ДНК. Цепи спирально закручены одна вокруг другой. ДНК соединена с белкамигистонами. Вдоль всей длины молекулы ДНК линейно располагаются гены. Хромосомы хорошо окрашиваются основными красителя ми в процессе деления клетки (см. Мейоз, Митоз). В ядре каждой соматической клетки человека содержится 46 хромосом, 23 из которых являются материнскими, а 23 — отцовскими. Каждая хромосома может воспроизводить свою точную копию в промежутках между клеточными делениями (см. Интерфаза), так что каждая новая образующаяся клетка получает полный набор хромосом. См. также Хроматида, Центромера, Половая хромосома. — Хромосомный (chromosomal).
Хромосомы
Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человека присутствует 46 хромосом, разделенных на 23 пары, из которых 22 являются аутосомами, а 23-я пара состоит из X- или У-хромосом, определяющих пол человека. Во время оплодотворения, когда мужские хромосомы в сперме соединяются с женскими хромосомами в яйцеклетке, сочетание XX определяет женский пол, а ХУ — мужской пол.
Микроскопическое тело в ядре клетки, которое становится заметным во время деления. Этот термин буквально означает окрашенное тело, и хромосомы были так названы, поскольку они глубоко окрашиваются основными красителями. Хромосомы содержат в себе гены, основные единицы наследственности. Каждый биологический вид имеет постоянное нормальное число хромосом. Так, в соматических клетках человека их 46, образующих 23 пары; яйцеклетка и сперматозоид содержат по 23 хромосомы, по одной из каждой пары. Из этих 23, 22 – аутосомы, и 1 – половая хромосома (или X или Y). При оплодотворении 23 хромосомы мужчины объединяются с 23 хромосомами женщины. Х-хромосомы – женские, Y – мужские. Нормальные женские соматические клетки имеют хромосомный набор – XX, нормальные мужские – XY; нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с X или Y XX – эмбрион будет женского пола; XY – мужского.
ХРОМОСОМЫ
см. хромо- + греч. soma — тело> — биол. органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Х. способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют ее в ряде поколений. Каждый вид организмов обладает характерным и постоянным набором хромосом в клетке, закрепленном в эволюции данного вида, а его изменения происходят только в результате мутаций. Термин предложен нем. анатомом и гистологом В. Вальдейером (W. Waldeyer) в 1888 г
хромато + греч. soma – тело) – микроскопическое тело в ядре клетки, которое, окрашенное основными красителями, становится заметным во время ее деления. Состоит из двух нитей – хроматид. Содержит в себе гены. Каждый биологический вид имеет постоянное нормальное число хромосом, в соматических клетках человека – их 46, они образуют 23 пары. Человеческие гаметы содержат по 23 хромосомы, по одной из каждой пары. Из них 22 – аутосомы и 1 – половая хромосома. При оплодотворении 23 хромосомы мужских половых клеток объединяются с 23 хромосомами яйцеклетки женщины. Х-хромосомы – женские, Y- хромосомы – мужские. Нормальные женские соматические клетки имеют хромосомный набор –ХХ, нормальные мужские – ХY, нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с Х- или Y- хромосомой.
Комплекс молекул ДНК, «упакованных» с помощью белка в своеобразные блоки. Хромосома состоит из двух хромосомных нитей – хроматид, место их соединения называется центромерой. Число хромосом в ядре каждой соматической клетки определенного вида растительного или животного мира в норме всегда строго определенное. Любая соматическая клетка человеческого организма содержит 46 хромосом, из них 44 соматические (аутосомы) и две – половые: в женском организме ХХ, в мужском – XY. Каждая соматическая клетка имеет удвоенный (диплоидный) набор хромосом по сравнению с гаплоидным набором половых клеток (гамет).
Хромосомы (диплоидные) (chromosomes (diploid))
структурные элементы ядра клетки, содержащие нитевидные цепи ДНК (связанной с белками), в которой заключена наследственная информация организма.
Хромосомы
органоиды клеточного ядра, являющиеся носителями генетической информации и определяющие наследственные свойства клеток и организмов.
Что такое хромосом. Хромосомы эукариот
Хромосомыимеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты () значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных — H1, H2A, H2B, H3 и H4 (так называемые) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.
Вхроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные. В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется(nucleofilament), или нуклеосомной нитью, диаметром около 10 нм.
В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесси удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районепоследовательности.
Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка H1 более толстую, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьии).
Вторичные перетяжки
Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.
Типы строения хромосом
Различают четыре типа строения хромосом:
- телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
- акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
- субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
- метацентрические (V-образные хромосомы, обладающие плечами равной длины).
Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одногоили.
Спутники (сателлиты)
Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.
Зона ядрышка
Зоны ядрышка ( организаторы ядрышка ) — специальные участки, с которыми связано появление некоторых вторичных перетяжек.
Хромонема
Хромонема — это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток, термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:
- паранемическую (элементы спирали легко разъединить);
- плектонемическую (нити плотно переплетаются).
Хромосома это кратко. Хромосомы
chromosome) — нитевидная структура клеточного ядра, несущая генетическую информацию в виде генов, которая становится видной при делении клетки. Хромосома состоит из двух длинных полинуклеатидных цепей, образующих молекулу ДНК. Цепи спирально закручены одна вокруг другой. ДНК соединена с белкамигистонами. Вдоль всей длины молекулы ДНК линейно располагаются гены. Хромосомы хорошо окрашиваются основными красителя ми в процессе деления клетки (см. Мейоз, Митоз). В ядре каждой соматической клетки человека содержится 46 хромосом, 23 из которых являются материнскими, а 23 — отцовскими. Каждая хромосома может воспроизводить свою точную копию в промежутках между клеточными делениями (см. Интерфаза), так что каждая новая образующаяся клетка получает полный набор хромосом. См. также Хроматида, Центромера, Половая хромосома. — Хромосомный (chromosomal).
Хромосомы
Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человека присутствует 46 хромосом, разделенных на 23 пары, из которых 22 являются аутосомами, а 23-я пара состоит из X- или У-хромосом, определяющих пол человека. Во время оплодотворения, когда мужские хромосомы в сперме соединяются с женскими хромосомами в яйцеклетке, сочетание XX определяет женский пол, а ХУ — мужской пол.
Микроскопическое тело в ядре клетки, которое становится заметным во время деления. Этот термин буквально означает окрашенное тело, и хромосомы были так названы, поскольку они глубоко окрашиваются основными красителями. Хромосомы содержат в себе гены, основные единицы наследственности. Каждый биологический вид имеет постоянное нормальное число хромосом. Так, в соматических клетках человека их 46, образующих 23 пары; яйцеклетка и сперматозоид содержат по 23 хромосомы, по одной из каждой пары. Из этих 23, 22 – аутосомы, и 1 – половая хромосома (или X или Y). При оплодотворении 23 хромосомы мужчины объединяются с 23 хромосомами женщины. Х-хромосомы – женские, Y – мужские. Нормальные женские соматические клетки имеют хромосомный набор – XX, нормальные мужские – XY; нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с X или Y XX – эмбрион будет женского пола; XY – мужского.
ХРОМОСОМЫ
см. хромо- + греч. soma — тело> — биол. органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Х. способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют ее в ряде поколений. Каждый вид организмов обладает характерным и постоянным набором хромосом в клетке, закрепленном в эволюции данного вида, а его изменения происходят только в результате мутаций. Термин предложен нем. анатомом и гистологом В. Вальдейером (W. Waldeyer) в 1888 г
хромато + греч. soma – тело) – микроскопическое тело в ядре клетки, которое, окрашенное основными красителями, становится заметным во время ее деления. Состоит из двух нитей – хроматид. Содержит в себе гены. Каждый биологический вид имеет постоянное нормальное число хромосом, в соматических клетках человека – их 46, они образуют 23 пары. Человеческие гаметы содержат по 23 хромосомы, по одной из каждой пары. Из них 22 – аутосомы и 1 – половая хромосома. При оплодотворении 23 хромосомы мужских половых клеток объединяются с 23 хромосомами яйцеклетки женщины. Х-хромосомы – женские, Y- хромосомы – мужские. Нормальные женские соматические клетки имеют хромосомный набор –ХХ, нормальные мужские – ХY, нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с Х- или Y- хромосомой.
Комплекс молекул ДНК, «упакованных» с помощью белка в своеобразные блоки. Хромосома состоит из двух хромосомных нитей – хроматид, место их соединения называется центромерой. Число хромосом в ядре каждой соматической клетки определенного вида растительного или животного мира в норме всегда строго определенное. Любая соматическая клетка человеческого организма содержит 46 хромосом, из них 44 соматические (аутосомы) и две – половые: в женском организме ХХ, в мужском – XY. Каждая соматическая клетка имеет удвоенный (диплоидный) набор хромосом по сравнению с гаплоидным набором половых клеток (гамет).
Хромосомы (диплоидные) (chromosomes (diploid))
структурные элементы ядра клетки, содержащие нитевидные цепи ДНК (связанной с белками), в которой заключена наследственная информация организма.
Хромосомы
органоиды клеточного ядра, являющиеся носителями генетической информации и определяющие наследственные свойства клеток и организмов.
Изменчивость хромосом в онтогенезе и эволюции
Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы — непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом
Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.
Библиогр.:
Бочков Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Ла Кур Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; Кикнадзе И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: Суонсо н К., Мерц Т. и Янг У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; Seuanez H. N, The phylogeny of human chromosomes, v. 2, B. a. o. 1979; Sharm a A. K. a. Sharma A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.
Симптоматика
Строение хромосомы
Выяснив сколько хромосом у человека, рассмотрим основы их строения. Хромосома является палочковидной структурой, которая состоит из двух сестринских хроматид. Они удерживаются центромерой, располагающейся в области первичной перетяжки. Каждая из хроматид строится из хроматиновых петель. Сам хроматин не подвергается репликации, в отличие от ДНК. С началом этого процесса прекращается синтез РНК. При этом хромосомы находятся в организме в двух состояниях:
- конденсированном (неактивное);
- деконденсированном (активное).
В зависимости от строения генетики выделяют следующие виды хромосом:
- телоцентрические;
- акроцентрические – второе плечо короткое и практически незаметное;
- субметацентрические – внешне напоминают букву L;
- метацентрические – плечики равной длины.
Гомологичные хромосомы
Парные хромосомы человека принято называть гомологичными. При зачатии одна хромосома наследуется от отца, вторая – от матери. На гомологичных хромосомах располагаются гены, которые отличаются по строению, однако выполняют одинаковую функцию. Гомологичные хромосомы имеют схожую последовательность нуклеотидов. Такие хромосомы, расположенные в диплоидных клетках, имеют одинаковые гены. Количество наборов гомологичных хромосом обозначается термином «плоидность». В половых клетках она равна одному (1n), в соматических – двум (2n).
Негомологичные хромосомы
Негомологичные хромосомы – это структуры, которые содержат несхожие гены. Данные структурные элементы не подвергаются конъюгации в процессе мейоза. Негомологичные хромосомы независимо друг от друга комбинируются в клетке. Этот факт был доказан в процессе изучения характеристик наследования признаков путем использования прямого цитологического метода.
Что значит 46 и 47 хромосом: история открытия
Годом открытия считают 1882 год, и связывают это событие с именем немецкого анатома Вальтера Флеминга , который описал и упорядочил сведения о них.
В начале XX века ученые Теодор Бовери и Уолтер Сеттон, каждые работая независимо, выдвинули гипотезу о том, что они играют роль в генетике и наследственности.
Экспериментально их идею подтвердили ученые Томас Морган, Кэлвин Бриджест, Альфред Стёртевант и Герман Мёллер. Объектом их изучения стала плодовая мушка Дрозофила. На основании данных проведенных экспериментов исследователи выдвинули хромосомную теорию наследственности. Она гласит, что наследственную информацию от поколения к поколению передают именно эти образования. Томас Морган за эту теорию получил Нобелевскую премию.
Ученые Альберт Леван и Джо Хин Тио в 1956 году установили, что у человека 46 хромосом. Этот набор характерен для аутосом, для половых хромосом их количество – 23. Поговорим подробнее о различии половых генов у мужчин и женщин.
Сколько хромосом у мужчин
Мужской набор данного вида в норме выглядит, как XY. Y-хромосома названа так за свою форму. Мужская не имеет некоторых участков, называемых аллелями, которые присущи женской хромосоме. Также она ответственна за формирование именно мужского типа организма, например, ген SRY есть только в этой хромосоме и контролирует сперматогенез, а также несет функцию формирования мужского пола у плода.
Сколько хромосом у женщин
Y не способна передавать свои участки X-хромосоме, то есть не может рекомбинироваться с ней.
Способна ли Y-хромосома исчезнуть? Не так давно ученые из Пенсильванского Университета опубликовали статью о том, что мужская генетическая информация не только эволюционировала быстрее X, но в процессе этого теряла гены. Например, в X-хромосоме всего 1100 генов, тогда как в Y всего 200 или даже меньше. Однако раньше это количество было идентично. Ученые предполагают, что через миллионы лет мужская хромосома вполне способна исчезнуть.
Количество хромосом в соматической клетке
Соматическая клетка
Эукаритические клетки организма человека имеют ядро. В его центральной части находятся хромосомы, представленные в виде нитей. Клетки организма подразделяются на соматические и половые. Первые определяют внешний вид или строение тела, например, рост, телосложение, цвет волос и глаз. В одной соматической клетке человека находится 2 пары хромосом, они двойные или диплоидные. Половые клетки (гаметы) представлены одной парой одинарных хромосом.
У человека 46 хромосом. В одной соматической клетке находятся 44 хромосомы или 22 пары (аутосомов) диплоидных хромосом. Последняя 23 пара образована 2 одинарными хромосомами, которые отвечают за принадлежность к полу.
Полинуклеатидные цепи (нити хромосом) скручиваются в виде спирали, образуя при этом ДНК. Ее участки составляют наименьшие информационные единицы – гены. Сложившаяся комбинация генов определяет структуру хромосом. Именно они позволяют выделить по характерным признакам отдельные группы живых организмов на планете.
Много соматических клеток
Весь комплекс наследственного материала одной клетки человека позволяет выявить его геном. Функционально человеческий геном состоит из набора 23 пар хромосом. Его структура отвечает за наследственные болезни, внешний вид, расовую принадлежность, врожденные умения и качества. Комбинация генов определяет психику. Это послужило причиной для выделения отдельной отрасли науки – психогенетики.
Что такое хромосомы
Хромосома образуется из очень длинной молекулы ДНК, которая содержит повторяющиеся цепочки генов. У каждого вида свой набор хромосом (кариотип). Например, у человека 46 хромосом: 22 пары аутосом разной длины и пара половых хромосом – XX или XY.
В геноме человека насчитывается 20-25 тыс. генов. Если молекулу ДНК из самой длинной хромосомы расположить вдоль линии, она займет около 1,5 м. Длина отдельного участка ДНК, который кодирует ген, составит всего 0,005 мм.
Место хранения определенного гена в хромосоме называют локусом. В каждом локусе – определенный аллель гена, одна из нескольких его форм.
Аллели могут быть одинаковыми – тогда говорят, что организм гомозиготный. Если аллели разные, то один из них главенствует, доминирует над другим. Доминантный ген подавляет рецессивный. В результате проявляется только один признак, но наследуются оба.
Набор хромосом и аллелей генов в них определяет наш внешний вид, физические и психические данные. Это база, которую затем изменяют природа, среда, образ жизни и т.д.