Содержание
Сложение многозначного числа с однозначным
Чтобы найти сумму многозначного числа и однозначного, можно действовать двумя способами. Оба они основаны на свойствах суммы чисел. Рассмотрим их на примерах.
Допустим, нам нужно найти сумму чисел 88 и 5.
Способ 1.
Представим число 88 в виде суммы 80+8 и прибавим к ней число 5. После этого, найдем сумму однозначных чисел 8 и 5, получится 13. Прибавим этот результат к числу 80. Число 13 – это 10+3, поэтому мы к 8 десяткам прибавляем 1 десяток, получаем 9 десятков, или число 90, а к нему прибавляем еще 3 (оставшиеся от числа 13), и получим 93.
То есть, мы проделываем такие действия:
88+5 = 80+8+5 = 80+13 = 80+10+3 = 90+3=93.
Способ 2.
Замечаем, что если к 88 прибавить 2, то получим полный десяток, то есть, число 90. Тогда представляем число 5 в виде суммы 2+3; число 2 складываем с 88, получаем замеченное нами ранее число 90. Добавляем к нему оставшееся число 3, и получаем результат 93.
То есть, ход вычисления был такой:
88+5 = 88+2+3 = 90+3 = 93.
Сложение многозначных чисел
Многозначные числа складывают по разрядам, используя переместительный и сочетательный законы сложения.
Пример. Сложим двузначные числа 26 и 48:
26 + 48 = (20 + 6) + (40 + 8) = 20 + 6 + 40 + 8 = (20 + 40) + (6 + 8) = 60 + 14 = 60 + (10 + 4) = 60 + 10 + 4 = (60 + 10) + 4 = 70 + 4 = 74.
Сначала мы разложили слагаемые на разряды, затем сгруппировали в одну группу десятки, в другую — единицы и выполнили сложение по разрядам, т. е. сложили десятки с десятками и единицы с единицами, затем один десяток, получившийся от сложения единиц, прибавили к десяткам, которых у нас было 6 от сложения десятков, и в конце сложили десятки с единицами.
Форма записи сложения, которую мы использовали, слишком длинная и потому неудобная, поэтому при сложении многозначных чисел обычно используется другая, более удобная форма записи, которая называется сложением столбиком.
Сложение столбиком
Сложение многозначных натуральных чисел удобней выполнять в столбик.
Сложение столбиком — это форма записи и способ сложения, используемый при сложении многозначных чисел. Сложение столбиком иначе ещё называют сложением в столбик.
Рассмотрим сложение столбиком на примере сложения чисел 7056 и 483.
Сложение в столбик записывается так: одно слагаемое записывается под другим так, чтобы цифры одинаковых разрядов стояли друг под другом (единицы под единицами, десятки под десятками и т. д.). Для удобства обычно меньшее число записывают под большим. Слева между слагаемыми ставится знак плюс, а под нижним слагаемым проводится горизонтальная черта:
Полученную запись можно мысленно разбить на столбики так, как это показано на рисунке:
Все дальнейшие действия сводятся к сложению однозначных чисел, которые находятся в одном столбике. Вычисление выполняется поразрядно справа налево, начиная с разряда единиц.
Если в результате сложения получается число меньшее 10, то оно записывается под чертой в этом же разряде.
Начинаем вычисление с разряда единиц: складываем числа 6 и 3. В результате имеем число 9. Так как 9 < 10, то записываем это число под чертой, в том же разряде:
Если в результате сложения получается число, равное 10 или большее 10, то под чертой в этом же разряде записывается значение разряда единиц полученного числа, а значение разряда десятков полученного числа запоминается (оно используется на следующем шаге).
Переходим к сложению чисел в следующем разряде, то есть к сложению значений разряда десятков. Складываем числа 5 и 8, получаем число 13. Так как 13 > 10, то под чертой, в том же разряде, записываем число 3 (это значение разряда единиц числа 13), а число 1 запоминаем (это значение разряда десятков числа 13), при этом говорят три пишем, а один в уме
. Чтобы не забыть о запомненном числе, его обычно записывают сверху над следующим (слева) разрядом:
Запомненное число прибавляется к сумме чисел следующего разряда.
Переходим к следующему разряду и складываем числа 0 и 4. В результате имеем 4. К полученному числу прибавляем запомненное число 1, получаем 5. Так как 5 < 10, то под чертой, в том же разряде, записываем число 5:
После этого происходит переход на один разряд влево и действия повторяются. Данный процесс продолжается до тех пор, пока числа не закончатся.
Если в столбике содержится только одно число, и у нас нет запомненного числа (от предыдущего сложения), в этом случае мы просто записываем это число под чертой, в том же разряде.
Так как в следующем столбике находится лишь одно число — 7, и в памяти у нас нет запомненного числа, то мы просто записываем 7 под чертой, в том же разряде:
Дальше никаких чисел нет и в памяти тоже чисел нет. На этом процесс сложения можно считать завершённым. Натуральное число, получившееся под чертой, является результатом сложения данных чисел. Теперь можно записать сумму данных чисел в обычном виде:
7056 + 483 = 7539.
Рассмотрим ещё пару примеров сложения столбиком, чтобы разобраться с оставшимися нюансами.
Пример 1. Сложим числа 29 и 6 столбиком.
Складываем 9 и 6, в результате получаем число 15. Так как 15 > 10, то число 5 записываем, а число 1 запоминаем:
Если в столбике содержится только одно число, и у нас имеется запомненное число (от предыдущего сложения), то запомненное число просто прибавляется к этому одному числу.
В следующем столбике находится лишь одно число — 2. Так как у нас в памяти имеется число 1, то его нужно прибавить к 2. В результате получаем число 3:
Дальше никаких чисел нет и запомненного числа тоже нет, следовательно, сложение столбиком завершено.
Пример 2. Сложим столбиком числа 43 и 94.
Складываем 3 и 4. В результате имеем число 7. Так как 7 < 10, то записываем это число под чертой, в том же разряде:
Если в последнем разряде в результате сложения получается число, равное 10 или большее 10, то под чертой в этом же разряде записывается значение разряда единиц полученного числа, а значение разряда десятков полученного числа записывается под чертой в следующий разряд.
В следующем разряде складываем числа 4 и 9, получаем число 13. Так как 13 > 10, то под чертой, в том же разряде, записываем число 3, а число 1 записываем под чертой в следующий разряд:
Дальше никаких чисел нет и в памяти числа тоже нет, следовательно, сложение в столбик завершено.
Удобство сложения в столбик заключается в том, что сложение многозначных натуральных чисел фактически сводится к сложению однозначных чисел и запись процесса сложения занимает меньше места.